Documentation

for

Kmltools Version 1.20
September 2008

1.0
General Information
Keyhole Markup Language (KML) has become a standard for geographic information system (GIS) data. KML is used by Google Earth, Google Maps, NASA’s World Wind, ESRI’s ArcGIS Explorer and others. KML is a type of XML and is easy to create using computer scripts. Kmltools is a set of scripts that was designed to take ASCII delimited files or CSV files and generate KML placemark files with no user interaction. For example, a sample script is included that will take data from the IHFS database, and using RiverPro in a batch mode, generate a CSV file. A another script is included that takes the output from CoCoRahs.tcl and extracts if data to make another input CSV file. Finally, the script will combine these files and create a KML document with two folders. One could easily add additional folders for snow, temperatures, etc.
2.0
User How‑To
The included driving script for automatic generation is makekml.sh. Normally, you would either create a shortcut with this command line and/or include it a cron job. This file will require editing for every office.
Usually, the first thing that makekml.sh does is excute run_rpf.ksh. The command line is:

./run_rpf.ksh product.pcc.XXX suffix

It will run RiverPro and create a file which has multiple lines which looks like this: lid|value. For example:

AAAA1|0.03

BBBA1|T

Riverpro will write this file at
/awips/hydroapps/whfs/local/data/product/work_product.suffix.

Next, the script runs getIHFSdata.py which will take the above file and adds name, detail (ignoring “at”), latitude, longitude, and elevation by looking up the information in the Location table in the IHFS database. The command line is:

./getIHFSdata.py inputfile outputfile

The <Lat> and <Lon> RiverPro template variables use the Riverstat table, which will not work for precipitation only locations. This is why getIHFSdata.py was created. If RiverPro is changed in future builds so that the <Lat> and <Lon> variables use the Location table, this script may no longer be needed. The output looks like this:

AAAK2|Astation|-89.34|37.23|641|0.03
BBBK2|Bstation|-88.23|38.12|500|T

Many offices are running CoCoRahs.tcl software by Brad Schick from Goodland KS to generate LCO product files for their CoCoRaHS data.. This program usually runs on LDAD since it must request data from the CoCoRaHS web site. In the process of running, it generates a debug.txt file which contains everything you need to plot data. At this point, makekml.sh will fetch debug.txt from the cocorahs.tcl run which will be on ldad, usually at /ldad/localapps/CoCoRahs. Only part of this file is needed, so coco2csv.py will strip out what is needed and save it under a designated output file. The command line looks like this:

./coco2csv.py inputfile outputfile

The workhorse script is csv2kml.py which can take almost any ASCII delimited or csv file as input. A configuration file tells which fields to use, counting from 0. The command line looks like this:

./csv2kml.py your_config.cfg

In the above data input example, the label value would be field 5, latitude would be field 3, longitude would be field 2, elevation would be field 4, and description, the box which pops up when you click on it would be a combination of fields 0 and 1. The configuration files can also designate an icon to plot and can color it according to another field using a color curve. In the above example, the colorwith field would be the same as the label field, 5. While this will frequently be the case, the label and colorwith can also be independent. The only required fields in input files are latitude and longitude.
These scripts were designed to plot any data. For example, if spotters names and phone numbers data looked like this:

111-234-4567|-100.34|39.46|Joe Spotter|Any
222-345-4567|-101.89|39.12|Mary Watcher|Night
then the label value would be field 0, latitude field 2, longitude field 1, and description field 3 and the colorwith field 4, which is the time to call them. The description field can include any field along with HMTL formatting tags. For example: To include a carriage return add
. For those who understand XML, the <![CDATA[...]]> tag is automatically included in the description field. There is no need to include this tag in the configuration file. See the KML reference for more details.
The configuration file contains all the information to make the plot. Multiple input files can also be included into one output file. The output will be a KML or KMZ file ready to be sent to the internet server. See appendix 1 for an example.
Finally, makekml.sh copies the output file to the internet server using scp. See figure 1 for a sample kml document in Google Earth.
While the scripts are designed to work together, they are independent and can be used in other applications, especially csv2kml.py.
3.0
Troubleshooting Information

If RiverPro is used to generate the data, a logfile will be created at /awips/hydroapps/whfs/local/data/logs. Any error messages from the scripts will be written to stderr. One can also look at the intermediate and kml files that are produced.
4.0
Installation Instructions
Install steps
1) Change the directory to /awips/dev/localapps and untar the installation file.

cd /awips/dev/localapps

tar –xvf kmltools1_20.tar

2)
The following files will be installed:
File

Description
getIHFSdata.py

Looks up data from the IHFS database
coco2csv.py

Extracts data from debug.txt file from CoCoRahs.tcl
csv2kml.py

Converts a list of locations and data with latitudes and longitudes and creates kml/kmz files
run_rpf.ksh

Runs Riverpro from the command line

makekml.sh

The driving script
daily_pcpn.cfg

A sample csv2kml configuration file for precipitation plots
std_pcpn_curve.csv

A sample color curve file for precipitation.

std_snow_curve.csv
A sample color curve file for snow.

dot.png

A sample icon file

std_pcpn.png

A sample precipitation scale overlay

std_snow.png

A sample snow scale overlay
Uninstall steps
To uninstall Kmltools just delete the kmltools directory.

5.0
Configuration Information
RiverPro
Inside of RiverPro, create a tabular template that lists LID a vertical bar (“|”) and the data you want. It should look like this:

name: your_name
formats: S5 “|” F5.2

varlist: <Id> <PP,1024,RZ,Z,0|12:00|2>

locid: AAAA1

locid: BBBA1

...

Next, create a dummy header template. It should look like this:

name:dummy_rvm

#
Create a new product using only the new header and tabular template and save this to a new settings (PCC) file. RiverPro will create a new file: settings_name.pcc.XXX, where XXX is your office id.

run_rpf.ksh, getIHFSdata.py, coco2csv.py
These scripts should not require any editing.

csv2kml.py
This script should not require any editing but you will create a configuration file for every plot you want to create. You can include different data in the same KML files by placing them in separate folders. The configuration files have this structure:

a comment line

[DEFAULT]

main_title: The Main Title %D
output:your_name.kml

[Plot1]

title: The Plot Title

seetitle: True

input: the_input_file.txt

icon: www.your.server.gov/your/path/your_icon.png

iconscale: 0.5

colorwith: 4

colorcurve: your_color_categories.csv
userange: True

legend: www.your.server.gov/your/path/your_legend.gif

seelegend: True

latitude: 1

longitude: 2

precision: 2
elevation: 3

label: 4

description: ID: %[0]
Name: %[5]
[Plot2]

...

There are only two options in the [DEFAULT] section. Both are required.
main_title:
The title of your KML document. In Google Earth, it will appear as the main folder. One can use date/time variables, see Appendix 2. It controls the kml <name> tag for <Document>.
output:
The name of the output KML/KMZ file. This will be copied to the internet server. The extension should be .kml or .kmz. If .kmz is selected, file will renamed doc.kml and included in a zip-deflated file with your name. This is the format that Google Earth and Map require. Zipping a file will greatly reduce the size of the file. Test files were reduced by an order of magnitude.
The following sections are for each map in the document. Each map will appear as a sub-folder under the main folder. The sub-folders will be sorted in alphabetical order of the section headers and section names will not appear. Thus, you can place the map titles in any order that you wish.

title:

The title of your plot. One can use date/time variables, see Appendix 2. It controls the kml <name> tag for <Folder>. This is required.
seetitle:
This controls if the map appears when the kml document is first displayed. This is optional, defaults to True and controls the kml <visibility> tag for <Folder>.
input:

The name of the input file to csv2kml.py. Quite often this will be the output of getIHFSdata.py. This is required.
delimiter:
The delimiter character in the input file. This is optional and defaults to a comma.

header:
Skip the header line of the input file. This is optional and defaults to False.

icon:

The name of the icon file which must reside on an internet server. The installed package includes dot.png which is a white dot, but can be any small graphic. If you want to color the icon by using a field, the icon should be white. This is due to the color option being overlaid on the existing color. If missing, the kml application will use a default icon; a yellow stick pin in Google Earth, a location bubble in Google Maps. This is optional and controls the kml <Icon> tag for <IconStyle>.
iconscale:
This is a scale to shrink the icon in a fraction. One half (0.5) works well but you can experiment with your icon. This is optional and defaults to 1.0, normal size. This option currently does not work in Google Maps. It controls the kml <scale> tag for <IconStyle>.
colorwith:
The field number of the data to color the plot. All field numbers count from zero, like Python and C. This option currently does not work in Google Maps. If you supply a colorwith option you must also supply a colorcurve. Colorwith is optional and controls the kml <color> tag for <IconStyle> and the <styleUrl> tag for <Placemark>.
colorcurve:
This is a file which shows the color categories to color the icon based on the colorwith field. The package includes std_pcpn_curve.csv and std_snow_curve.csv as an example. Many offices will want to experiment with these categories, but you should also create a matching legend graphic file. If you supply a colorcurve option, you must supply a colorwith option. Colorcurve is optional.
userange:
Most of the time, a range of the colorwith field will determine the plotted color. You can override this by setting this value to False. Then the plot field will have to equal the exact value in the table. This is good for coloring on fixed categories. This is optional and defaults to True.

legend:
This is name of a legend graphic which will be overlayed at the top left corner of the map. This file must reside on an internet server. The package includes std_pcpn.png and std_snow.png. These graphics should match the values in your colorcurve file. This is optional and controls the kml <Icon> tag for <ScreenOverlay>.
seelegend:
This controls if the legend is visible when the maps are first loaded. For example, you may want to include liquid and snow in the same kml document but you would not want the two legends displayed at the same time. This is optional and defaults to True.
latitude:
The field number of latitude. It is part of the kml <coordinates> tag for <Point>. This is required.
longitude:
The field number of longitude. It is part of the kml <coordinates> tag for <Point>. This is required.
precision:
The precision of display programs can lead to a problem in some areas of the country. With high precision latitudes and longitudes, the public would be able to zoom in on an observer’s precise location, even as far as seeing their homes and yards! This variable limits the precision to the digits after the decimal point. For example, 2 would limit the accuracy to hundredths of a degree. This is optional and defaults to 10, very high precision.

elevation:
The field value for elevation. This is optional. If the elevation field is not given, all elevations become zero. It is part of the kml <coordinates> tag for <Point>.
label:

The field value for the label of the placemark. This is optional and does not have to be the same as colorwith. It controls the kml <name> tag for <Placemark>.
description:
The contents of the pop up box when the placemark location is clicked on. It can contain multiple fields and HTML tags like
. Fields are indicted by %[n] where n is the field position in the data, counting from zero. This is optional. It controls the kml <description> tag for <Placemark>.
color curve files

csv2kml colors icons according to the values of the colorwith field which are compared to values in this file. The structure of each category has three items separated by a vertical bar (“|”). For example:

a comment line

10.00|ffff00ff|purple

 5.00|ff0000ff|red

...

 0.00|ff222222|dark gray

The first item is the lower limit for ranges or the exact match for categories. The second item is the hexadecimal number for the color. It is broken down like this: OOBBGGRR. OO is the opacity value, usually ff for maximum opacity. BB is blue, GG is green, and RR is red. The third item is the comment for the color. This is for the convenience for installer, the program ignores this.

Any non-numeric value like “T” or “M” in ranges will be colored as the last category in ranges. Any non-matches in exact categories will also be colored as the last category.
makekml.sh
This is the driving script to create the document. It will usually look like this but will vary from office to office:

#!/bin/sh

a comment line

run RiverPro and create work_prod
./run_rpf.ksh pccfile.pcc.XXX suffix
get and add lat/lon

./getIHFSdata.py /awips/hydroapps/whfs/local/data/product/work_prod.suffix output.csv
fetch CoCoRaHS data

./scp ldad@ls1/ldad/localapps/CoCoRahs/debug.txt debug.txt

./coco2csv debug.txt cocorahs.csv
create kml
./csv2kml.py config_file.cfg

send to ldad

scp output.kml ldad@ls1:/rsnyc/server/path # sends it to the server
end script
6.0
Maintenance Information
Little if any maintenance is required.

7.0
Changes from Previous versions
Changes in version 1.00
· Initial version
Changes in version 1.10
· Enhanced options in csv2kml.py
· Added coco2csv.py
Changes in version 1.20

· Improved kml structure in csv2kml.py
· Added support for excel type csv files in csv2kml.py
8.0
 Maintenance Information
Originating Programmer/Office:
Mike Callahan

WFO - Louisville, KY

Maintenance Programmer/Office:
Mike Callahan

WFO - Louisville, KY

9.0
Abbreviations and Acronyms
AWIPS
Advanced Weather Interactive Processing System

cfg

UNIX-type configuration file

kml

Keyhole Markup Language
10.0
References
Google, KML Reference Manual, http://code.google.com/apis/kml/documentation/kmlreference.html
NWS, RiverPro Reference Manual, https://ocwws.weather.gov/intranet/whfs/RiverProMainBody.doc
NWS, CoCoRahs.tcl Website
http://140.90.90.253/~applications/LAD/generalappinfoout.php3?appnum=1856
11.0
Notices

This program is released in the public domain and cannot be copyrighted. Using this program from an unauthorized computer to access AWIPS is a federal crime. The National Weather Service releases it as is and is not responsible for any damages that may occur from its use.
12.0
Appendices
Appendx 1
A short explanation of a kml file generated by csv2kml.py
1. <?xml version=”1.0” encoding=”UTF-8”?>
2. <kml xmlns=”http://earth.goggle.com/kml/2.2”>

3. <Document>

4. <name>NWS Louisville Data</name>
5. <Style id=example1ffff8000>

6. <IconStyle>

7. <scale>0.5</scale>

8. <color>ffff8000</color>

9. <Icon>

10. <href>http://www.server.gov/path/to/images/dot.png</href>

11. </Icon>

12. </IconStyle>

13. </Style>

14. .. other styles
15. <Folder>
16. <name>Daily Precipitation</name>

17. <visibility>1</visibility>

18. <ScreenOverlay>

19. <name>Legend</name>

20. <visibility>1</visibility>

21. <Icon>
22. <href>http://www.server.gov/path/to/images/legend.png</href>

23. </Icon>

24. <overlayXY x=”0” y=”1” xunits=”fraction” yunits=”fraction”/>

25. <screenXY x=”0” y=”1” xunits=”fraction” yunits=”fraction”/>

26. <size x=”-1” y=”-1” xunits=”fraction” yunits=”fraction”/>

27. </ScreenOverlay>

28. <Placemark>

29. <name>0.18</name>

30. <description>Astation</description>

31. <styleUrl>#exampleffff8000</styleUrl>
32. <Point>

33. <coordinates>-85.13,36.69,0</coordinates>

34. </Point>

35. </Placemark>

36. ... other placemarks
37. </Folder>

38. ...other styles

39. ...other folders

40.</Documement>

41.</kml>

Line

Explanation

1. xml declaration.

2. kml declaration.

3. Begin kml document.

4. Name of Document. Appears in Google Earth as main folder.

5. Begin Style. All styles are above the folder labeled by the value in the color curve.
6. Begin IconStyle.

7. The fractional value to display icon.

8. The opacity and color (BGR) to display icon.

9. Begin Icon.

10. Location of Icon.

11. End Icon.

12. End IconStyle.

13. End Style.

14. This is repeated for every color in the color curve. Each folder will have have a family of styles. However, styles must stay above folders in the hierarchy.
15. Begin Folder.

16. Name of Folder (map). Appears in Google Earth as a subfolder under main folder.

17. Folder is visible. Overlay will appear when kml is loaded.

18. Begin Screen Overlay

19. Name of overlay. Appears in Google Earth as a subfolder under folder in line 6.

20. Overlay is visible. Overlay will appear when kml is loaded.
21. Begin Icon.

22. Location of screen overlay.

23. End Icon

24. Specifies a point on (or outside of) the overlay image that is mapped to the screen coordinate <screenXY>. x=0 and y=1 is upper left corner.

25. Specifies a point relative to the screen origin that the overlay image is mapped to.
26. Size of overlay. x=-1 and y=-1 is native size.

27. End screen overlay

28. Begin Placemark

29. Label. This will appear next to icon and also under folder.
30. Description of point. This will appear when icon is clicked and also under folder.

31. Style to use for coloring icon.

32. Begin Point.

33. Coordinates of location (longitude, latitude, elevation).

34. End Point.

35. End Placemark.

36. Begin Placemark.

37. This is repeated for every location plotted.

38. End Folder.

39. Other style families for the next map.
40. Other Folders (maps)
41. End Document.

42. End kml.

Appendix 2
Date/Time Variables

These variables can be included in document and folder titles.

Variable

Value

Example
%a

Abbreviated Weekday

FRI

%A

Weekday

FRIDAY

%b

Abbreviated Month

FEB

%B

Month

FEBRUARY

%d

Day of Month

04

%D

Date

02/04/05

%e

Day of Month, blank padded
 4

%H

24 Hour

07

%I

12 Hour

07

%j

Julian Date

121

%k

24 Hour, blank padded

 7

%l

12 Hour, blank padded

 7

%m

Month Number

09

%M

Minute

18

%p

AM or PM

AM

%S

Second

05

%T

24 Hour Time

07:18:05

%U

Week Number

06

%w

Day of Week Number

4

%y

Two Digit Year

04

%Y

Four Digit Year

2004

%Z

Local Time Zone

EST

%%

a percent

%

%-.

No padding

%_.

Blank padding

Figure 1. Sample Output in Google Earth
[image: image1.png]= Google Earth

100 200 500 10.00

0.0}

010000540, 0Cimagelindianaivap Framekork Data N i

o, IR £.0.00:0.00 3 A
o 0ogle

% ooou,o@; |- o= G 18

e £ i
37:433360°N | 85737:33 60°W. 000" Eyealt 162.22 mi

