
1

LDAD Web rsync
Greg Jackson, WFO Midland, TX

Version 2.33

June 8, 2010

Overview:

Though designed to meet Southern Region CMS needs, the Southern Region LDAD Web rsync

script is designed as a general rsync utility that can be used not only to rsync content to the web

but accomplish other rsync-related tasks as well, including grid upload. Though useful beyond

the confines of the Southern Region, this documentation will give examples typical of Southern

Region use.

As part of the effort to consolidate the NWS web farms and move to a content management

system (CMS), the Southern Region has implemented changes to the procedures for uploading

web content office websites. These changes will ultimately allow load-balancing between the

web farms, provide multiple upload points, and extend service backup functionality to include

web products. The goal is the elimination of single points of failure for web services.

The chosen method for content upload is rsync. The Linux rsync utility is very versatile and

greatly limits the amount of logic required to synchronize web content between the local office

and NWS web servers.

For the rsync procedure to work as intended, it is critical that only one computer in each office is

assigned the role of synchronizing web site content via rsync.

The new Linux-based LDAD servers provide the best option for this role due to built-in

redundancy, standardization, support, and AWIPS connectivity. The rsync scripts provided are

designed to make failover to ls3 and recovery to ls2 automatic. Other machines may be used as

sources for data pushed through LDAD to office websites, but it is recommended that only

LDAD actually synchronize with the web server directly.

There should be adequate space in /data/ldad for the great majority of sites to use this procedure,

particularly if outdated web content is removed. The /data/ldad partition has approximately 34

GB of total storage space.

For locations that use more than one machine to rsync information to the web farm, it is very

important that the two machines are not synchronizing the same modules. This configuration is

not supported. Those sites that do not have LDAD (such as CWSUs, the FAA Academy and

SMG), can use the same scripts on a Linux machine or Windows XP (running Cygwin). For

those sites using a non-LDAD Linux machine, an ordinary user other than “ldad” can be used to

set up and use these scripts.

2

Directory Layout:

A standard directory layout will be required for all office websites to ensure that proper support

can be provided to Southern Region offices. The tables in Appendix C show the relationship

between locations on the web, corresponding web server Linux file system paths, rsync module

names, and LDAD (or local host) directories both before and after CMS implementation. A

description of each location is also provided. The corresponding configuration options in

ldad_web_config.sh are shown below each table. Typically, only RFCs would use the archive

and ahps2 modules.

There are file type restrictions that will apply to rsync on the CMS server and development CMS

server. See Appendix D for information on excluded files.

Note that some paths may not be browsed on the web (like apps-data). This provides a basic

level of information protection in these locations. These locations are read by site scripts to

provide dynamic application data.

Operational Overview:

The ldad_web_push.sh script is run once a minute to determine whether changes have occurred

in any of the LDAD (local host) web directories.

An rsync is run by the script when a change is detected in a module and one of the following is

true:

1) an “update” file is found in /data/ldad/web/tmp corresponding to the module name (i.e.,

maf_html.update). The update file is created by a user to activate synchronization of the

web modules. An rsync only actually occurs if a new file has been added or an existing

file has been modified. File deletions are not synchronized with an “update”.

2) the module is an operational module, which contains “live data”, like the apps, rt_images,

fxc, ahps2 or archive modules.

3) a “force” file (like maf_html.force) exists in the tmp directory. Since no changes are

detected by the script when files are deleted and no files have been added or changed, a

“force” file may be required to delete files. Though creation of a “force” file is okay in

scripts that are manually triggered, it would be a bad idea for scripts that are triggered

automatically (mindlessly). Note that file deletions will still not occur for any module

listed as a no_delete_module in ldad_web_config.sh.

4) a “pull” file (i.e., maf_images.pull) can be used to trigger a one-time synchronization that

pulls from the web server to the local machine before completing a normal rsync. This

option can be used to get files that may only exist on the web server, like images stored

using the CMS interface or operational files for a backup office.

5) the “delete” file (i.e., maf_images.delete) can be dropped into the tmp directory to force a

one-time synchronization that includes the --delete-after option. The delete option is

normally included in synchronizations by default; however, those modules listed in the

no_delete_modules list in the configuration files as well as backup operational modules

3

do not normally include this option. This trigger can be used to accomplish “clean up”

on the web server. It is advisable to pull content and delete unnecessary content before

using this option to avoid accidental deletions.

6) The “special” file (i.e., maf_images.special) in the tmp directory triggers an rsync using

the contents of the file as rsync include/exclude rules using the rsync --include-from

switch. When this control file is used to trigger synchronization of a web module, the

“exclude” file (described later) is ignored, if it exists, so all necessary include/exclude

rules must be in this file. The use of the “special” file can be useful to do things like

rsync only a specified subdirectory, like images used for news headlines. The code

below is an example maf_images.special that could be used for that purpose:

+ /headline

+ /headline/**

 – *

In plain English, this set of pattern rules says to include the news directory and all

subdirectories and files within it, but exclude everything else. For more details, type

“man rsync” in a Linux shell and look for the section on “EXCLUDE PATTERNS”.

There are seven situations that prevent an rsync from occurring, even for live data, and one

situation that results in a non-fatal warning (which also indicates an incomplete rsync):

1) a “block” file has been placed in the tmp directory (i.e, maf_html.block). This file is

never automatically created or removed. It can be used to prevent attempts to update

modules not in use or that do not exist on the web farm.

2) A “wait” file is in the tmp directory (i.e., maf_images.wait). When a wait file is found

that is less than a minute old, rsync will be skipped. After a minute, the file is ignored

and deleted. This file can be used to briefly prevent an rsync while files are being

created, usually by script (hence the short lifetime of the wait). This control file is

generally not necessary, but this file might be used if both a “special” and a “delete” or

“pull” control file are being created for a single rsync. To ensure that both the “special”

and other control files are processed in the same run, the “wait” file can be created before

the other control files are created. Once all required control files are in place, it is a good

idea to delete the “wait” file, though it will be deleted once it becomes a minute old.

3) “lock” file corresponding to the module name is found in the tmp directory (i.e.,

maf_html.lock). The lock is created when an rsync has been triggered for a module and

is removed upon completion. The lock file‟s purpose is to prevent two rsync processes

from attempting to sync the same module simultaneously. If a lock file exists and the

parent process no longer exists, it is ignored and syncs can continue. If a lock file exists

for more than 15 minutes, the script will kill the corresponding rsync process if it

continues to run.

4) an “error” file (i.e., maf_html.error) has been created in the tmp directory. This file

contains the rsync error number returned. As long as an error file exists, attempts to

rsync the module occur only every 10 minutes due to the likelihood that the cause of an

rsync failure is likely to last on the order of tens of minutes. Error files that have not

been touched for a while are deleted and normal synchronization continues.

4

5) a “huge” file (i.e., tua_archive.huge) has been created in the tmp directory. This file is

created when an rsync times out. This will primarily occur when the size of the module

is very big. As long as this file exists, attempts to rsync are scaled back according to the

setting of huge_module_delay (defaults to 900 seconds). The file is removed, allowing

more frequent updates, when a successful rsync is completed within the time specified by

default_timeout (normally 60 seconds).

6) an “alive” file (i.e., maf_apps.alive) is created for every module every time

ldad_web_push.sh runs on the cron, by default. This behavior can be disabled by setting

block_alive_stat in the configuration file to 1. The alive files allow the administrator to

identify currently functional control file names and view other module settings. The

contents of the file (in order) include the configuration settings used, the module

definition, the remote rsync server and module, the local directory that is synchronized

with the module, and the module‟s stat file identification. The alive files can help

troubleshoot configuration problems. Below is an example of maf_apps.alive:

operational_modules

apps|apps-data

martha2.srh.noaa.gov::maf_apps

/data/ldad/web/apps-data/maf

maf_apps.stat

7) (optionally) if the rsync server cannot be pinged; however, NOAAnet blocks ping traffic

by default, preventing use of this option unless an exception has been obtained by

opening a ticket with NOAAnet. The ping option should be disabled in the

ldad_web_config.sh file unless an exception has been created and tested. If firewall

exception have been created on NOAAnet, this is a useful option that help save execution

time when servers are out for an extended period.

8) a “warning” file (i.e., crp_images.warning) indicates that a non-fatal rsync error has

occurred. This file contains the rsync error code that caused the warning. Though this

condition is considered a successful rsync (a retry will not occur), it does indicate that

some files could not be synchronized. A remote rsync server permissions issue (error 23)

will cause a warning to be generated. Inspecting the log file will reveal which files could

not be updated. It may take a system administrator‟s assistance to result permission

problems. Sites should monitor for generation of warning status files.

For those modules (currently images, fxc, rt_images and apps) that are available for

synchronization on both the operational server and the development server

(sshdev.crh.noaa.gov), the script will normally synchronize with the operational server only.

Synchronization to the development server can be triggered by placing a “webdev” file (i.e.,

maf_images.webdev) in /data/ldad/web/tmp. As long as a webdev file exists for a module, it will

be synchronized on the development server whenever synchronization with the operational

server occurs. Creating a webdev file to trigger dual synchronization of the images module can

be beneficial in expediting development of CMS web pages. Triggering dual synchronization

may be beneficial as well for the rt_images, fxc and apps modules at times to allow testing of

scripts in development using live data. It makes sense to always sync the images module at both

locations, but to save bandwidth, other modules should only be triggered when testing scripts in

development.

5

Because the CMS is currently on a Central Region server and the operation web sites for other

regions are on regional servers, without automatic replication to CRH, the web modules for the

images and media modules must be replicated to the Central Region CMS server

(taz.crh.noaa.gov) in additional to the regional server until a better solution is devised. This

replication allows images and media to be found when working on the Central Region CMS.

Synchronization with the CMS server “taz” occurs when a module definition is preceded by a

plus “+” symbol immediately before the module definition (i.e., +images). Control and status

files with “secondary” in the file name are automatically produced when secondary publication

is enabled in this way. An example of such a file, also created in /data/ldad/web/tmp is

maf_images.secondary.update. This file is automatically created when a maf_images.update file

is produced and will result in synchronization of the images module with the Central Region

server “taz” (or other server specified as secondary_server in ldad_web_config.sh). Note that

this dual publication is not necessary for a non-CMS web site.

Specific files and directories can be excluded from synchronization by placing an “exclude” file

(i.e., maf_html.exclude) in the tmp directory. This file remains until removed. This file is

processed by the rsync command according to the rules that indicated for the rsync

--exclude-from switch. Details about --exclude-from file patterns can be obtained by entering

“man rsync” in a Linux shell. This control file should not be used except for if necessary to

prevent synchronization for proper module operation. This situation is expected in few cases.

After a successful rsync occurs, a “stat” file (i.e., maf_html.stat or maf_images.webdev.stat) is

left in /data/ldad/web/tmp with the file modification time set to the last modification time within

the synced directory. This file is used to determine when updates have occurred in that directory

tree. At LDAD sites, the corresponding directory on the secondary LDAD server is also updated

using rsync after a successful module rsync. When ls3 is running the ls package, this does not

occur as ls2 is likely down and failed over to ls3. The content of the “stat” file consists of the

hostname of the LDAD server (or local host) where rsync was last successfully run for a

package.

When LDAD failback occurs from ls3 to ls2, as determined by comparing a module‟s “stat” file,

the script will use rsync to pull updated content from the web rsync server. This is because this

scenario will usually occur when ls2 has been down, in which case ls2 could not be updated by

rsync.

When the last rsync for a module is at least 12 hours prior to a new rsync attempt, the script will

pull new or updated files from the web as well. This is done to decrease the possibility of losing

files that have been stored on the web server but not on the primary LDAD server (or local host).

This behavior can, and should, be disabled by setting the rsync_only variable in

ldad_web_config.sh to 1 once the site is exclusively migrated to the use of RSYNC to update

website contents.

Note: Sites attempting to continue use of FTP files from computers other than the

primary LDAD parallel to use of the rsync scripts may lose content transferred to the web

6

farm by FTP. Serious thought should be put into the possible side-effects of this rsync

procedure. Quick migration to an rsync-only configuration is strongly recommended.

7

Prerequisites:

Before beginning the process of setting up the rsync scripts, sites must coordinate with the

manager of any remote rsync server to ensure that the following has been done:

1. The LDAD (or local host) public IP address has been added to the list of sites allowed to

rsync to the remote rsync server. For sites using a second machine (not recommended),

its IP address must be provided as well.

2. The rsync modules have been set up for the site.

3. File ownership/permissions have been set appropriately for all files in the remote rsync

module such that the rsync daemon can modify and delete any files in the remote

module‟s location.

Though steps 2 and 3 must be completed by the remote rsync server‟s system administrator, it is

necessary that the site provide the single IP address that should have rsync access to the remote

module. When permission-related errors are observed, contact the remote rsync server‟s system

administrator.

For sites using LDAD, the site must be in LDAD Mode B with both ls2 and ls3 up prior to

configuration of rsync. As root on ls3, type checkmode to be certain that LDAD is running in

mode B with no failover. The output should look similar to the following:

Checking ls2's heartbeat configuration... the configuration is for mode B.

Checking ls3's heartbeat configuration... the configuration is for mode B.

Checking IP addresses for mode B (this machine's current mode)...

LS1 = 192.168.1.10 - active shared cluster (actual name of computer: ls2-maf).

LS2 = 192.168.1.11 - active.

LS3 = 192.168.1.12 - active.

LS1-new = 192.168.1.13 - inactive. (This is as it should be for Mode B.)

LS1-old = 192.168.1.20 - active.

LDAD is running in Operating Mode B with ls2 as the primary Linux-cluster host.

Ensure that the root user can execute secure shell from ls2 to ls3, by executing the following

commands on ls2 as the root user:

ssh ls3 hostname

You should see ls3-<officeid>. If not, troubleshoot ssh before continuing.

In testing, one site experienced loss of files in /data/ldad on ls2 for reasons that have yet to be

determined, so a backup of /data/ldad may be desired before continuing.

Cygwin (Windows) sites, should use the Cygwin installation instructions near

the end of this document and use Steps 1-4 as outlined in that section rather

than the Steps 1-4 that follow.

8

Step 1 – Move Setup Files to LDAD or Linux Host (for Cygwin see Appendix A)

1. On ls2 (or the Linux host) as the root user, copy ldad_web_rsync.zip to the /root

directory. If FTP is used to move this file into LDAD, be sure to transfer the file in

binary mode.

2. Type the following commands:

a. cd /root

b. unzip ldad_web_rsync.zip

c. chmod -R u+rx ldad_web*

d. chmod -R u+w ldad_web_config.sh

Step 2 – Rsync Setup Script

To prepare for web synchronization, directory structures must be created and permissions set on

ls2 and ls3 (or the Linux host), executable files must be copied to their proper locations, and log

rotation must be configured. Though this can be done manually, a script is provided to simplify

the process and ensure a standard configuration. This script can be re-run without clobbering

existing content. All module status files (like “force” or “stat” files) are removed from

/data/ldad/web/tmp except for “block” files. Note that the output file may be useful in

troubleshooting initial setup. The following steps should be completed as the root user on ls2

(or Linux host):

1. cd /root

2. Copy ldad_web_config.sh.pre_cms to ldad_web_config.sh if the site is not currently on

the CMS. Copy ldad_web_config.sh.cms to ldad_web_config.sh if the site is currently

on the CMS.

3. Modify ldad_web_config.sh for a site ID as well as backup site IDs (use „‟ for the

backup sites if none exist). Do not change any settings below the point indicated in the

configuration file without consulting the author of the script.

4. script -a -f ldad_web_setup.out

5. ./ldad_web_setup.sh

6. If the local Linux host is not LDAD, manually set user and group ownership to

correspond to the user that will run the rsync scripts. The setup script sets the user and

group ownership to ldad automatically on an LDAD system, but the script does not

assume a specific user or group ID on other Linux systems. The setup script should

indicate the Linux command that should be used, which should look like:

chown -cfR user:group /data/ldad/web

7. exit

9

Step 3 – Import Current Module Contents

To ensure that the local rsync host contains all files currently stored in the remote module, it is a

good idea to trigger a pull on the first synchronization. This is recommended whenever remote

server content already exists. A “pull” trigger file can be created (empty) to flag that a pull from

the remote server with occur the next time the ldad_web_push.sh script runs. Refer to the

operational overview for details on trigger and stat files.

To pull current web contents on the local host do the following as root on the local rsync

machine:

1. su - ldad (non LDAD sites can use an alternate ordinary user account)

2. cd /data/ldad/web/tmp

3. touch xxx_module.pull (i.e., maf_html.pull)

4. cd /data/ldad/web/bin

5. script -a -f ldad_web_pull.out

6. ./ldad_web_push.sh xxx_module (i.e, maf_html)

7. exit

8. Review the script output carefully to ensure that a complete download occurred. In

particular, look for rsync error 12 and timeouts. If there is any question about the

success of this initial pull, coordinate with the remote system administrator. The script

output may be important to diagnosing issues. Error 12 normally indicates a module

configuration issue or permissions issue on the remote server.

9. It does not hurt to repeat this procedure to be certain that a complete set of files was

downloaded.

10. If space allows, consider creating a tar file of /data/ldad/web that can be backed up to

optical media to prevent potential loss of critical data, or rsync this directory tree to

another computer outside of the local host as a backup.

Note: There is a chance that timeouts will occur when pulling current module contents to

LDAD (or the local host) due to the amount of data that is transferred. Should timeouts

occur, just repeat this procedure until it can complete without a timeout.

10

Step 4 – Set Up rsync Crons

Only once confident that all files have been downloaded to the local host and several

performance tests have been completed by manually running “ldad_web_push.sh”, as ldad on

ls2 (or the selected rsync user on non-LDAD systems):

LDAD sites modify /etc/ha.d/cron.d/SITElscron to include the following:

* * * * * ldad /data/ldad/web/bin/ldad_web_push.sh all > /dev/null 2>&1

For non-LDAD sites, add the following to the ordinary user account‟s (used in step 3) cron:

* * * * * /data/ldad/web/bin/ldad_web_push.sh all > /dev/null 2>&1

The output file can become very big rather fast; however, an ldad_web_logrotate configuration

file is copied to /etc/logrotate.d during the setup script so that daily cleanup occurs, as long as the

cron log file path indicated in the example above is used.

At LDAD sites only, once SITElscron is edited, complete the following steps to activate the new

cron entry and back it up to ls3 for failover:

1. cp SITElscron /etc/cron.d

2. service crond restart

3. scp SITElscron ls3:/etc/ha.d/cron.d

A Note About Service Backup Modules:

There will likely be “stat” and “error” files created in your /data/ldad/web/tmp directory for the

offices that you have specified as backup locations in ldad_web_config.sh. The ability to

provide backup for other offices can be considered a feature to be implemented in the future.

The modules required to provide backup of the operational modules do not exist at this time but

will be created when needed.

To prevent attempts to sync modules that are not used, create “block” files in /data/ldad/web/tmp

for each backup module that is resulting in the creation of “error” files in that directory. The

“error” and “stat” files for blocked modules can be removed once the “block” file exists since

they serve no purpose at that point. Below is an example of what you might do in the Linux or

Cygwin shell to block the apps module:

cd /data/ldad/web/tmp

touch maf_apps.block

rm -f maf_apps.error maf_apps.stat

11

What Next?

At the initial stage, everything is the same as before rsync on the surface in that your web site

looks the same to our users as it did before. There are two things that are different “under the

hood” at this point:

1) use of rsync rather than the FTP protocol to transfer content

2) narrowing the source machine for web updates from your office to one (and sometimes

two) IP address.

Nothing else has happened, yet. These scripts do nothing to the organization or content of your

web site.

In all likelihood, you will find a lot of files under the images directory. For most offices, not

necessarily all, these files are not linked from any website. It is a good idea to make a backup of

that directory before deleting anything, but once you have determined that the files in the images

directory are not in use, the following procedure will empty the directory:

1) As the ldad user, touch /data/ldad/web/tmp/<sid>_images.pull

2) Run /data/ldad/web/bin/ldad_web_push.sh

3) Make a backup of the images directory contents

4) Delete the unneeded files in the images directory

5) Touch /data/ldad/web/<sid>_images.delete

6) Run /data/ldad/web/bin/ldad_web_push.sh

Once you are at the point that you are confident that the rsync approach works, it will be

important to change all scripts that FTP data images so that this rsync method is used instead as

soon as possible so that FTP access can be turned off. The big advantage of this rsync method to

updating dynamic contents is that any programs that need to post data or images to the web can

do so by simply copying files to the apps-data or rtimages directory on LDAD. Local

applications do not need to be concerned with the communications logic.

Once rsync is implemented you can also begin moving images to the "images" module and

updating the referring web pages so that they point to images in their new location

(/images/<sid>); however, note that this step is not required immediately and is not a

prerequisite (indeed it may be an unnecessary burden) to building your new site on in the CMS

development website – the images can be added to the new images directory later as the new

CMS is populated; however, if images are moved to the new location prior to CMS

implementation, references to the new images location do need to be relative to the web host

(i.e., /images/maf/image.png rather than http://www.srh.noaa.gov/images/maf/image.png) since

you don't necessarily know the name of the host once we are load balanced between the three

web farms.

Eventually "live" updates to the html module go away as the CMS comes online. Once the CMS

is live, some care needs to be used to update images to avoid accidental deletion of image data.

One of the following approaches should be used:

12

1) update images strictly using rsync to both the operational and development web servers (see

discussion of how to do this by touching the file /data/ldad/web/tmp/<sid>_images.webdev

in the operational overview).

2) as images and directories are created in the CMS interface, ensure that the same images and

directories are created in the /data/ldad/web/images directory on LDAD

3) before going live, touch the file <sid>_images.webdev.pull in the tmp directory this will

ensure all image files on the development server are pulled to the local machine.

There is no way to look into the apps-data directory using a web browser. You can reference the

apps-data directories in scripts (i.e., /www/apps-data/localwfo/<sid>).

The idea behind rt_images may not be intuitively obvious. It can be thought of as similar to the

images module, except it is intended for frequent automatic updates (likely done by scripts) of a

relative few "operational" images. You may have hundreds or thousands of static, non-

operational web page images. If the operational images were in the same place as the static

images, there would be a greater burden on the network every time a new operational image is

uploaded. There are also times, when working on significant changes to the website, for

instance, when you may not want to rsync the whole images module when an "operational" or

real time image is updated.

Before CMS implementation, HTML, PHP and CSS can be uploaded through the HTML

module. After CMS implementation, that module will go away. The HTML, PHP, CSS and

any other documents that belong in the HTML area will be copied to the development server to

be approved. Only once they are approved will documents be put on the operational servers‟

HTML area.

Publishing Web Content:

Content stored on the “operational” web modules (apps, rt_images, fxc, ahps2 and archive) are

published whenever a new file is copied to the LDAD directory containing these modules.

These files are considered to contain real-time or near-real-time data. Once the LDAD cron is

updated to include ldad_web_push.sh, no additional action is required to publish operational web

module content.

Content stored on the static “web modules” (html, images and wwwdev) is only published when

triggered by creation of an “update” or “force” file in /data/ldad/web/tmp. To publish the html

module for “MAF”, for instance, touch a new file /data/ldad/web/tmp/maf_html.update. The

ldad_web_push.sh script will then publish the maf_html module at next run if files have been

added or changed. Sites may wish to determine whether using the “force” files is a simpler

option for scripts that are manually run to publish web content to ensure that file deletions are

caught. Both options are provided for flexibility.

13

Shell scripts can be written for AWIPS to allow publishing from an AWIPS workstation and

included in the Apps Menu by adding the script to /awips/fxa/data/appsLaucher/local/conf on

AWIPS workstations.

Such a script might have the following:

 ssh ldad@ls1 touch /data/ldad/web/tmp/maf_html.force

If ls1 is made available to the office LAN using Samba, a windows command file can be run

from /data/ldad/web to do the same thing. The following is an example publish.cmd script:

@echo off

cls

echo.

echo.

echo "Updated!" > \\ls1-maf\web\tmp\maf_html.force

echo "Updated!" > \\ls1-maf\web\tmp\maf_images.force

echo Rsync will be used to publish html and images directories.

echo Check web content in a few minutes.

echo.

echo.

pause

More complex scripts, possibly including a GUI, can be developed to simplify the publishing

process for less experienced users, possibly by allowing selection of modules to publish. Eric

Holweg has produced an excellent, straight-forward Java program that you may want to use.

Eric‟s WebSync application and brief installation and usage notes are available on the Trac CMS

Wiki.

Remember that a “force” file (maf_html.force) can be created to force a sync even if the script

does not detect a change since the last sync. A “block” file (sjt_apps.block) can be created to

prevent a sync, even if changes are detected.

A “webdev” file (maf_images.webdev) can be created to publish to the development server in

addition to the operational server. The images, apps and rt_images modules are configured on

the development server.

Deleting Files:

It may not be apparent how to delete files from the web server. Though it would seem intuitive

that deleting files from the local LDAD followed by touching the corresponding “update” file

would accomplish this, it will not because file dates are used to determine when updates have

occurred.

Another complication is that the ldad_web_push.sh script pulls from the web server before

pushing when no updates have occurred in the previous 12 hours. This behavior is intended to

14

increase the chance that files moved to the web by FTP are updated on LDAD rather than

deleted, as could occur when both FTP and rsync are in use. This behavior ceases when

rsync_only is set to “1” in the ldad_web_config.sh file.

Finally, some modules may be specified as “no_delete_modules” or “web_modules” in

ldad_web_config.sh. Files are never deleted during synchronization for those modules.

The easiest way to ensure that deletion occurs on the next synchronization is to touch a “delete”

file in /data/ldad/web/tmp corresponding to the module that you intend to delete files from. This

will trigger a synchronization with deletion for both operational and web modules, whether or

not those modules are in the “no_delete_modules” list.

CMS Website Activation:

Once the new website has been built on the developmental CMS server, it is a good idea to pull

images that exist on the developmental server to LDAD, particularly if multiple image upload

methods have been used during site development. This will ensure that the local host has all the

files in the images module in the same structure as on the developmental CMS server – recall

that when an rsync occurs on the operational web images module, all images not on the local

host will be removed from the operational web images module if they do not exist locally.

You can trigger a pull of images from the development module by dropping the file

<sid>_images.webdev.pull in the tmp directory of the rsync installation.

Also refer to the example CMS site settings in Appendix C as there are likely changes required

for the modules. Removing the html module, which does not exist once a site is on the CMS, is

one example of a change required after moving to the CMS.

Important Note About SFTP to Development Server:

It is not a good idea to use SFTP to copy files to any of the directories that are also updated by

using rsync modules. Permission conflicts could result that prevent rsync from updating files on

the development server. If SFTP must be used, it is advisable to ensure that all files created have

permissions set to 777 (rwxrwxrw) to avoid permission problems using rsync.

15

Appendix A – Cygwin Install

Offices that do not have LDAD and do not have a Linux computer running Redhat Linux can

still utilize the rsync scripts for web page management through the use of the Linux emulator

Cygwin. The Cygwin package should only be used by locations that have no alternative.

To ensure proper operation, use only the Cygwin package created for this purpose.

1. Download the rsync Cygwin package (as ISO CD image) at:

http://lucretia.srh.noaa.gov/maf/it/files/CygwinRsync.iso

Save CygwinRsync.iso to a chosen temporary location.

2. Burn the downloaded ISO CD image file to a CD with any CD burning package that

supports burning ISO images. If a commercial product is not available, InfraRecorder

can be downloaded from http://infrarecorder.org/ (InfraRecorder V0.46.1 was used in

testing):

a. Insert a blank CD in the CD drive.

b. Run InfraRecorder and click on the “Write Image”:

c. Navigate to and select the ISO image downloaded in Step 1:

http://lucretia.srh.noaa.gov/maf/it/files/CygwinRsync.iso
http://infrarecorder.org/

16

d. Accept the defaults. Note that if the “OK” button is disabled, it is because a

writable CD has not been detected. If a writable CD is in the selected drive, click

the refresh button to the right of the drive selection drop-down menu.

e. Once the disk is done writing, you should get confirmation of a successful write,

and the CDROM will eject:

17

3. Log into the Rsync host machine as the administrator.

4. Insert the Cygwin installation CD in Step 2 and run Setup.exe. On the first screen, click

the “Next” button.

5. Select “Install from Local Directory” as the installation type and click “Next”.

18

6. Accept the default installation directory, make sure that the installation is available to all

users and leave the default text file type “Unix”. Click “Next”:

7. Ensure that the root directory of the installation CD is selected as the “Local Package

Directory” and click “Next” (setup may not respond for several minutes):

19

8. When prompted to select packages, click on “Default” next to “All”, at the top of the

package list, until the “Install”option is shown. The packages on the CD were selected to

support rsync, the bash shell, and a cron daemon. Omissions could cause an incomplete

installation. Click “Next” when all packages show “Install”:

20

9. It may be convenient to create startup icons on the Desktop and in the Start Menu. Click

“Finish” to begin installation:

10. Once the Cygwin install is complete, start Cywin by clicking on the shortcut on the

Desktop or Start Menu, or click on Cygwin.bat in C:\cygwin.

11. To install the Cygwin cron daemon as a Windows service, enter the following (all on one

line:

cygrunsrv -I cron -p /usr/sbin/cron -a -D -d "Cygwin cron"

-e "CYGWIN=tty ntsec"

then,

net start cron

The “Cygwin cron” service can be managed in the Windows “Services” Administrative

Tool.

At this point, the Cygwin Linux emulator is installed on Windows. All rsync script installation

procedures should be completed within the Cygwin shell with the local Windows administrator

logged on. These procedures are otherwise the same as the LDAD Linux installation instructions

but are repeated in the following pages with Cygwin modifications for clarity and minor

modifications.

21

Some interesting items to note about Cygwin:

1. The Cygwin root drive “/” is equivalent to C:\cygwin in Windows and is also

/cygdrive/c/cygwin within the Cygwin Linux emulation. Any drive in Windows can be

accessed within Cygwin using this convention as well!

2. Some Linux utilities in Cygwin are named the same as Windows counterparts (like “find”

or “more”). When the Cygwin command is preferred, the full path may be required, or

the PATH variable should be redefined to include Windows paths last.

3. You can use Windows-based editors to modify files in Cygwin file system (c:\cygwin

and below) provided that they are “Linux-safe”. Notepad adds carriage returns to text

files. Linux does not expect carriage returns in text files, including scripts. One safe

editor is Notepad++, available at:

http://notepad-plus.sourceforge.net/uk/download.php

Step 1 – Move Setup Files to Cygwin

1. As the local Windows administrator, copy ldad_web_rsync.zip to the C:\cygwin\tmp

directory (which corresponds to /tmp in Cygwin).

2. In the Cygwin shell, type the following commands:

a. cd /tmp

b. unzip ldad_web_rsync.zip

c. chmod u+rx ldad_web*

d. chmod u+w ldad_web_config.sh

Step 2 – LDAD Setup Script

The first step to preparing the rsync client scripts for web synchronization is to set up the

directory structure with the appropriate permissions and copy executable files to their proper

location. Though this can be done manually, a script is provided to simplify the process and

ensure a standard configuration. This script can be re-run without clobbering existing content.

All module status files (like “force” or “stat” files) are removed from /data/ldad/web/tmp except

for “block” files. From the Cygwin shell, do the following:

1. cd /tmp

2. Copy ldad_web_config.sh.pre_cms to ldad_web_config.sh if the site is not currently on

the CMS. Copy ldad_web_config.sh.cms to ldad_web_config.sh if the site is currently

on the CMS.

3. Modify ldad_web_config.sh for a site ID as well as backup site IDs (if any). If there are

no backup sites, set “backup_sites” to an empty string (i.e., backup_sites=‟‟). If not

familiar with Linux editing commands edit C:\cygwin\tmp\ldad_web_config.sh using a

Linux file friendly Windows editor like Notepad++.

4. Set primary_ldad to the name of the “short” Windows computer name (not fully-

qualified, like MAF-W-WEB) and set secondary_ldad to an empty string.

22

5. Do not change any settings below the point indicated in the configuration file without

consulting the author of the script.

6. From the Cygwin shell enter:

./ldad_web_setup.sh

Step 3 – Import Current HTML Contents

To ensure that the Windows rsync client contains all files currently stored in the remote module,

it is a good idea to trigger a pull on the first synchronization. This is recommended whenever

remote server content already exists. A “pull” trigger file can be created (empty) to flag that a

pull from the remote server with occur the next time the ldad_web_push.sh script runs. Refer to

the operational overview for details on trigger and stat files.

To pull current web contents onto the local Windows machine run the Cygwin shell as the

Windows local administrator:

1. su - ldad (or other user intended to be used for rsync in Cygwin)

2. cd /data/ldad/web/tmp

3. touch xxx_module.pull (i.e., maf_html.pull)

4. cd /data/ldad/web/bin

5. script -a -f ldad_web_pull.out

6. ./ldad_web_push.sh xxx_module (i.e, maf_html)

7. exit

8. Review the script output carefully to ensure that a complete download occurred. In

particular, look for rsync error 12 and timeouts. If there is any question about the

success of this initial pull, coordinate with the remote system administrator. The script

output may be important to diagnosing issues. Error 12 normally indicates a module

configuration issue or permissions issue on the remote server.

9. It does not hurt to repeat this procedure to be certain that a complete set of files was

downloaded.

10. If space allows, consider creating a tar file of /data/ldad/web that can be backed up to

optical media to prevent potential loss of critical data, or rsync this directory tree to

another computer outside of the local host as a backup.

Note: There is a chance that timeouts will occur when pulling current module contents to the

local Windows Cygwin host due to the amount of data that is transferred. Should timeouts

occur, just repeat this procedure until it can complete without a timeout.

The /data/ldad/web directory where web contents, rsync scripts, and temporary work files

reside correspond to the local directory C:\cygwin\data\ldad\web. It is recommended that

those directories that others are allowed to update have proper permissions set. This can be

done within Windows.

23

Step 4 – Set Up LDAD Crons

Only once confident that all files have been downloaded to the local machine and several

performance tests have been completed by manually running “ldad_web_push.sh”, as the local

Windows administrator, modify the administrator cron to include the following (all on one line):

* * * * * /data/ldad/web/bin/ldad_web_push.sh all > /dev/null 2>&1

To modify the cron, enter “crontab -e” in the Cygwin shell. The editor is vim, so some “vi”

knowledge is necessary. Use of vi is beyond the scope of these instructions, though there are

various guides on the internet. One such guide is located at:

http://www-acs.ucsd.edu/info/vi_tutorial.shtml

The output file can become very big rather fast; however, the script automatically rotates and

deletes log files.

Note that other instructions in this document do generally apply to Cygwin implementations.

Please continue with the section “A Note About Backup Modules” that follows the LDAD

installation steps.

24

Appendix B – Upgrade Instructions

Upgrading the rsync scripts is not laborious. In fact, it is relatively easy! In essence, update the

rsync scripts by reinstalling the package. For Cygwin-based installations, Cygwin does not need

to be reinstalled.

Before upgrading, be sure to back up the files in /data/ldad/web/bin (or

C:\Cygwin\data\ldad\web\bin for Cywin installs) in case it becomes necessary to revert to the

previous versions of the scripts.

To upgrade the rsync scripts, complete “Step 1” and “Step 2” of the original installation

procedures. For Cygwin installations, see Appendix A, bypassing the Cygwin installation

portion. The reason that it is a good idea to use this approach is that the ldad_web_setup.sh

script updates both LDADs when it runs and creates any necessary directories.

It is strongly advised that the provided ldad_web_config.sh.pre_cms or ldad_web_config.sh.cms

script be used as a starting point, modifying as necessary for local use, before running

ldad_web_setup.sh rather than using your existing configuration. There may be critical changes

or additions that could be lost otherwise.

Whenever updates are installed, also refer to the Release Notes at the end of this document for

any addition information that may be relevant to your site or configuration.

25

Appendix C – Directory Structure
Directory and Module Structure Prior to CMS Implementation

‡ A few modules can be copied to both the active website and the development server (details in Operational Overview).

In ldad_web_config.sh:

dev_server='sshdev.crh.noaa.gov'

web_modules='html images'

operational_modules = 'apps|apps-data rt_images|rtimages fxc sshdev.crh.noaa.gov:fxc|fxcdev media archive ahps2'

no_delete_modules='archive'

Web Server Path and
Linux File Path

rsync Module LDAD (Local) Directory Description

/<sid>
/www/html/<sid>

<sid>_html /data/ldad/web/html HTML,CSS & PHP documents (goes away after CMS
implementation).

/images/<sid>
/www/images/<sid>

<sid>_images ‡ /data/ldad/web/images Static website images

(none)
/www/apps-data/localwfo/<sid>

<sid>_apps ‡ /data/ldad/web/apps-data/<sid> Data and dynamic content used by local apps and web
pages

/images/rtimages/<sid>
/www/images/rtimages/<sid> †

<sid>_rt_images ‡ /data/ldad/web/rtimages/<sid> Real time (operational) images

/images/fxc/<sid>
/www/images/fxc/<sid>

<sid>_fxc /data/ldad/web/fxc/<sid> Images for GraphiCast and other Regional and National
programs.

/images/fxc/<sid>
/www/images/fxc/<sid>

<sid>_fxc /data/ldad/web/fxcdev/<sid> Images for GraphiCast and other Regional and National
programs on the development server (for training and

practice).

/media/<sid>
/www/apps-data/media /<sid>

<sid>_media ‡ /data/ldad/web/media/<sid> Articulate presentation files.

/archive/<sid>
/www/archive/<sid>

<sid>_archive /data/ldad/web/archive/<sid> Long-term archive (primarily RFC use)

/images/ahps2/<sid>
/www/images/ahps2/<sid>

<sid>_ahps2 /data/ldad/web/ahps2/<sid> AHPS graphics generated by RFCs

 /data/ldad/web/bin Rsync support scripts

 /data/ldad/web/logs Rsync script log file output

 /data/ldad/web/tmp Rsync support script work area

26

Directory and Module Structure After CMS Implementation

‡ A few modules can be copied to both the active website and the development server (details in Operational Overview).

† Note that synchronization with taz.crh.noaa.gov may be necessary initially for image availability on the CMS (reason for + before images module).

In ldad_web_config.sh:

dev_server='sshdev.crh.noaa.gov'

secondary_server='taz.crh.noaa.gov'

web_modules='+images'

operational_modules = 'apps|apps-data rt_images|rtimages fxc sshdev.crh.noaa.gov:fxc|fxcdev +media archive ahps2'

no_delete_modules='archive'

Web Server Path and
Linux File Path

rsync Module LDAD (Local) Directory Description

/images/<sid>
/www/images/<sid>

<sid>_images ‡ † /data/ldad/web/images Static website images.

(none)
/www/apps-data/localwfo/<sid>

<sid>_apps ‡ /data/ldad/web/apps-data/<sid> Data and dynamic content used by local apps and web
pages

/images/rtimages/<sid>
/www/images/rtimages/<sid>

<sid>_rt_images ‡ /data/ldad/web/rtimages/<sid> Real time (operational) images

/images/fxc/<sid>
/www/images/fxc/<sid>

<sid>_fxc /data/ldad/web/fxc/<sid> Images for GraphiCast and other Regional and National
programs.

/images/fxc/<sid>
/www/images/fxc/<sid>

<sid>_fxc /data/ldad/web/fxcdev/<sid> Images for GraphiCast and other Regional and National
programs on the development server (for training and

practice).

/media/<sid>
/www/apps-data/media /<sid>

<sid>_media ‡ † /data/ldad/web/media/<sid> Articulate presentation files.

/archive/<sid>
/www/archive/<sid>

<sid>_archive /data/ldad/web/archive/<sid> Long-term archive (primarily RFC use)

/images/ahps2/<sid>
/www/images/ahps2/<sid>

<sid>_ahps2 /data/ldad/web/ahps2/<sid> AHPS graphics generated by RFCs

 /data/ldad/web/bin Rsync support scripts

 /data/ldad/web/logs Rsync script log file output

 /data/ldad/web/tmp Rsync support script work area

27

Appendix D – Excluded Types by Module

Each module has an intended purpose. Though adherence to the intended purpose for each

module is somewhat dependent on every site‟s cooperation, there are some file types that will not

be allowed to rsync, in part to enforce the intended use of each module and the integrity of the

web farm.

The exclusions are currently the same for each rsync module, though some modification may

occur in the future. Also these exclusions apply to the CMS and development CMS servers.

Prior to CMS implementation, no exclusions apply but sites should ensure that excluded file

types are not being synchronized to avoid problems after CMS implementation.

As a general rule of thumb, currently excluded files are compressed files, scripts, and HTML

pages. When HTML data is uploaded for script use in the apps module, this data should be

uploaded as a “txt” file or other allowed flat-file type.

Below are the exclusions are currently configured:

html (available pre-CMS only)

 No exclusions

images

 tar, gz, php, html, shtml, cgi, pl, htm, sh, bsh, txt

apps

 tar, gz, php, cgi, pl, sh, bsh

rt_images

 tar, gz, php, html, shtml, cgi, pl, htm, sh, bsh, txt

fxc

tar, gz, php, html, shtml, cgi, pl, htm, sh, bsh

media

tar, gz, php, cgi, pl, sh, bsh

ahps2

 tar, gz, php, html, shtml, cgi, pl, htm, sh, bsh

archive

 tar, gz, php, html, shtml, cgi, pl, htm, sh, bsh

28

Appendix E – ldad_web_config.sh Options

There are several options in the ldad_web_config.sh script that should not be modified without

coordination with the rsync scripts‟ author due to their ability to create unexpected behavior in

the scripts. The other rsync scripts should not be modified at all.

 There are several settings that must be changed for each office:

site The site variable defines the office based on the ID used on the web. For,

instance, for the Midland WFO:

 site='maf'

backup_sites The backup_sites variable is a space-delimited list of backup sites for

which rsync web backup services will be provided. These sites are also

listed using the site IDs used on the web. Some sites, like CWSUs, may

not currently offer backup services for another site. In that case,

backup_sites should be set to a null string (i.e., ''). The Midland WFO

backs up San Angelo and El Paso:

 backup_sites='sjt epz'

primary_ldad The primary_ldad variable specifies the host name of the machine that

normally runs the rsync scripts. For WFOs and RFCs, this would typically

be 'ls2'. For sites like CWSUs, that either use a non-LDAD Linux or

Windows machine, the primary_ldad variable would be set to the host

name of the actual machine (i.e., 'MAF-W-RSYNC' or 'MAF-LW-

RSYNC'). Typical setting for a WFO or RFC:

 primary_ldad='ls2'

secondary_ldad The secondary_ldad variable specifies the host name of the machine that

runs the rsync scripts when the machine listed as the primary_ldad is not

running as the primary LDAD. This setting is only applicable to a WFO

or RFC environment using LDAD since the backup scheme is dependent

on the AWIPS LDAD failover architecture for proper operation. Sites

running the rsync scripts on a single non-LDAD machine need to set this

variable to a null string (i.e., ''). For WFOs and RFCs:

 secondary_ldad='ls3'

29

block_alive_stat By default, “alive” status files are dropped in the tmp directory during

each ldad_web_push.sh run. The block_alive_stat variable can be set to 1

to disable creation of these files. If creation of these files is desired, set

block_alive_stat to 0 (typical):

 block_alive_stat=0

require_ping The require_ping variable can help script efficiency by allowing the script

to test the availability of each rsync server before attempting to open an

rsync session. To enable this feature set require_ping to 1. Before

enabling the feature, test pings should be made from the rsync script

machine(s) to every remote rsync host. If test pings fail, a ticket can be

opened with NOAAnet to request firewall rules allowing the necessary

ping access. If ping access is not allowed or this feature is not desired, set

require_ping to 0 (typical):

 require_ping=0

rsync_only While a site concurrently uses FTP and rsync to put files on the web, it is

possible for files to be on the web that are not in the rsync script‟s

directory structure. This can be alleviated to some degree by setting

rsync_only to 0. When rsync_only is set to 0, the rsync script will pull

updated content from the web before attempt to push new continue when

more than 12 hours has elapsed since the last successful rsync. Once FTP

is disabled, rsync_only should be set to 1:

 rsync_only=1

default_timeout The rsync command will timeout during very long transfers. If this is a

routine problem due to the size and/or number of files typically

transferred, the default_timeout period can be increased. A setting of 60

seconds will be appropriate for most sites. If timeouts occur frequently,

information from the ldad_web_push log file may be helpful in

determining a more appropriate setting. For most locations:

 default_timeout=60

30

huge_module_delay When the script detects a timeout on a module, the module is considered a

“huge” module. Attempts to rsync a huge module are scaled back to the

period specified by huge_module_delay. Most sites will not experience

“huge” modules, so a typical setting of 900 seconds between huge module

rsync attempts will generally be good. Sites that do see modules being

designated as huge (see the ldad_web_push) log file, should consider how

often attempts to synchronize the offending module(s) should be made;

otherwise, a typical setting:

 huge_module_delay=900

dev_server The dev_server variable specifies the name of the development server.

When a “webdev” control file is found in the tmp directory for a module,

that module will be synchronized with both the operational web filer and

the development server. Presently, all sites would use the same setting:

 dev_server='sshdev.crh.noaa.gov'

secondary_server The secondary_server variable specifies the name of a secondary server to

rsync modules to. Module definitions immediately proceeded with a plus

„+‟ symbol (like „+images‟) will synchronize to both the operational and a

secondary server. This configuration will be needed for the images and

media modules initially to make images and media available in the CMS

at Central Region. Presently, all sites would use the same setting:

 dev_server='taz.crh.noaa.gov'

prepend_server Setting prepend_server to 1 results in the short hostname of servers

explicitly included by name in either web_modules or

operational_modules to be prepended to corresponding control files. This

feature is designed to make it easier to identify control files when modules

with the same name exists on more than one server.

 prepend_server=1

web_modules The web_modules variable is a space-delimited list of modules that

support static web pages. Since these modules do not have dynamic

content, synchronizations will not occur for modules listed as

web_modules unless a corresponding “update”, “force”, “delete” or “pull”

control file is dropped in the rsync tmp directory, triggering a one-time

rysnc. A typical list of web modules (prior to CMS activation – html goes

away afterward):

 web_modules='html images'

31

 File paths for web_modules are normally built by adding the module name

to local_web_root (described later). Since backup support is not

implemented for these modules, the path to files in web_modules does not

include an office ID. For example, the file path for the images module

would typically be /data/ldad/web/images.

 The remote module actually synchronized with is assumed to be

<sid>_<module>. For example, files in the images module for the

Midland WFO are synchronized from /data/ldad/web/images to the

maf_images module on the remote server.

 If an alternate file path is required for a web_module, a module can be

specified by module name + “pipe” symbol + path. For example, if we

added a module named “test” whose files are in the “localtest” directory

relative to the local_web_root:

 web_modules='html images test|localtest'

 The rsync scripts can rsync with servers other than the operational web

filer or development server by preceding the module name with the full

remote server name followed by a colon as show in the example below:

 web_modules='html images testserv.srh.noaa.gov:test|localtest'

 Normally, the rsync script prepends the site ID to the defined module

name. This behavior may not be appropriate for a shared module that is

not owned by a specific office. To prevent automatic module name

expansion, place an “at” (or “@”) character immediately before the

module definition in web_modules:

 web_modules='html images @shared|common'

 In this example, for “html” and “images” the remote module names would

be expanded to “maf_html” and “maf_images”, while “shared” would

remain named “shared”.

 Note that to prevent unintentional deletion of files in shared modules,

those modules that use the “@” directive are treated the same as a module

listed in the no_delete_modules and no_pull_modules variables.

 Publishing of modules to a secondary server, defined by secondary_server

can be accomplished by place a “+” directive immediately before the

module definition. This approach is temporarily used for the images and

media modules to publish to the CRH CMS server (taz.crh.noaa.gov) in

addition to the operational server for those sites on the CMS.

32

 The example below applies to CMS sites:

 web_modules='+images'

In very rare instances when both a „+‟ directive and a „@‟ directive are

required, the „@‟ directive appears first:

web_modules='+images @+ztl_images'

operational_modules The operational_modules variable is a space-delimited list of modules that

support dynamic web content (images and application data). Operational

modules are synchronized whenever a file change is detected in the

operational_modules local files, so control files are not necessary to

trigger publishing of data to operational_modules; however, a “block”

control file can be dropped in the tmp directory to prevent

synchronization. This may be desired for backup sites until the

appropriate configuration exists on the web filer for backup support.

 It is assumed that a site will provide backup services for each office listed

as backup_sites. For this reason, the site ID is appended to each of the

operational_modules to determine local paths. For instance, WFO

Midland‟s files that are synchronized with the “fxc” module would be

located in the directory fxc/maf, relative to local_web_root.

 When the “@” directive, described previously in the web_modules section,

is used (for a shared module), the site ID is not appended to the module‟s

local file path and is not prepended to the remote module name.

 A typical set of operational_modules for WFOs:

 operational_modules='apps|apps-data rt_images|rtimages fxc‟

 A typical set of operational_modules for RFCs:

 operational_modules='apps|apps-data rt_images|rtimages fxc archive ahps2'

 As with web_modules, alternate local paths and servers can be specified:

 operational_modules='apps|apps-data rt_images|rtimages fxc sshdev.crh.noaa.gov:fxc|fxcdev'

 Likewise, the „+‟ directive may be used:

 operational_modules='apps|apps-data rt_images|rtimages +media'

no_delete_modules By default, rsync is run with a --delete option on all modules, except

operational modules for backup sites. There reasons why this option may

not be desirable as a default. For instance, for site html and images

33

modules, automatic use of this option could wipe out an entire website if

the local files were mistakenly removed prior to rsync. Other modules

might grow to an excessive size if all files were retained on the local

machine. The no_delete_modules is a space-delimited list of modules that

should not implement the --delete option during rsync. The following

settings are recommended:

 no_delete_modules='archive images html'

 The --delete option can still be used on a no_delete_module by dropping a

“delete” control file corresponding to the module in the tmp directory to

trigger a one-time rsync with the delete option.

no_pull_modules The no_pull_modules variable is a space-delimited list of modules that

should never be pulled from the web prior to synchronization, regardless

of the rsync_only setting. Modules that could exhaust local storage

capacity should be included in this list:

 no_pull_modules='archive'

local_web_root The local_web_root specifies where the rsync script files reside. For most

locations this variable should be set as follows:

 local_web_root='/data/ldad/web'

ldad_module The ldad_module variable specifies the name of the module that

corresponds to /data/ldad on the secondary LDAD (ls3). For non-LDAD

sites, this variable has no function. At WFOs and RFCs, the correct

setting would be:

 ldad_module='data_ldad'

ldad_web_rel The ldad_web_rel variable specifies where the local_web_root is relative

to the secondary LDAD‟s ldad_module location. At non-LDAD sites, this

setting has no effect. For WFOs and RFCs:

 ldad_web_rel='web'

rsync_server The rsync_server variable specifies the host name for the remote rsync

server that all modules are synchronized with when an alternate server is

not specified in operational_modules or web_modules. The setting that is

currently appropriate:

 rsync_server='martha2.srh.noaa.gov'

34

rsync_pull_opts The rsync_pull_opts are options used by rsync when pulling module data

from a remote host. Since --delete option use is determined by the rsync

script, these options should never include --delete. Since correct options

are necessary for proper script operation, the defaults should not be

changed:

 export rsync_pull_opts='-t -lruv --progress --stats --bwlimit=256'

rsync_web_opts The rsync_web_opts are options used by rsync when pushing module data

to a remote host. Since --delete option use is determined by the rsync

script, these options should never include --delete. Since correct options

are necessary for proper script operation, the defaults should not be

changed:

 export rsync_web_opts='-lrtuv --progress --stats --bwlimit=256'

rsync_ldad_opts The rsyn_ldad_opts are options used by rsync when pushing module data

to the secondary LDAD after successful rsync with a remote host. Since

the --delete option use is determined by the rsync script, these options

should never include --delete. Since correct options are necessary for

proper script operation, the defaults should not be changed:

 export rsync_ldad_opts='-lrtuv --progress --stats'

max_lock_age The max_lock_age is the number of seconds that a the rsync task is

allowed to lock a module using a “lock” control file for exclusive

synchronization before a new rsync task kills the previous rsync task on a

module to attempt rsync. Until this amount of time has elapsed, rsync

tasks will not attempt to rsync a locked module. The max_lock_age

variable should logically be at least as large as the default_timeout. When

an error occurs during rsync, an “error” file is created for a module. As

long as that file exists, attempts to rsync that module will also occur only

as often as indicated by the max_lock_age until the error condition is

resolved to avoid excessive bandwidth and CPU utilization. The

following setting is appropriate for most sites:

 max_lock_age=900

35

Appendix F – Control File Naming

The names of control and status files for existing modules can be easily identified by inspecting

the script tmp directory (usually /data/ldad/web/tmp) for the “alive” control files. A status file

ending with the “alive” suffix is created for each currently defined module as long as the

block_alive_stat variable in ldad_web_config.sh is set to 0 (or is not defined). The contents of

the “alive” status files give useful information about modules, so block_alive_stat should only be

set to 1 once the local configuration is debugged and operating smoothly.

Here is an example from a status file called sshdev_maf_fxc_fxcdev.alive:

operational_modules Module defined in operational_modules

sshdev.crh.noaa.gov:fxc|fxcdev Module definition in operational_modules

sshdev.crh.noaa.gov::maf_fxc Module server and remote module name

/data/ldad/web/fxcdev/maf Local path synchronized with module

sshdev_maf_fxc_fxcdev.stat Name of module‟s status file

There is a complex set of status and control file base filenames that can be difficult to discern, so

it is easiest to use the “alive” files:

1. <sid>_<module> for all modules on the production server whose local file directory and

remote module name are the same.

2. <sid>_<module>_<dir> for all modules on the production server whose local file

directory and remote module names differ and for all modules having a remote server

name explicitly defined in the module definition.

3. A “.webdev” extension is added to modules also synchronized with the development

server.

4. <module>_<dir> for all modules whose definition is preceded by „@‟ (meaning that the

site ID should not be automatically prepended to the remote module name – use the

module name as explicitly defined).

5. <hostname>_<sid>_<module>_<dir> for modules on a remote server explicitly defined

in the module definition.

6. <hostname>_<module>_<dir> for modules on a remote server explicitly defined in the

module definition preceded by „@‟.

Again this naming convention is complex due to support of a legacy naming convention. Over

the evolution of the ldad_web_push.sh script, new demands have required extensions to the

initial naming convention. It is easiest to use the “alive” files as a reference.

36

Appendix G – Note on Publishing to “taz”

For those sites on the CMS, there is initially no automatic replication from the operational web

filers outside CRH to the CMS server at CRH. For this reason, images and media published to

other regional operational web farms are not available for web design, including headlines, on

the Central Region CMS server, currently taz.crh.noaa.gov.

Though automatic replication from regional web servers to CRH is planned, the details have not

yet been worked out, so a workaround has been devised. The workaround is to publish some

modules to both the regional servers and the CRH CMS server. These modules are the “images”

and “media” modules.

To make this approach as painless as possible, sites must use version 2.30 or later of the

ldad_web_push,sh script. Also, the following settings should be in the ldad_web_config.sh files

for CMS sites only (be sure to maintain local modules using your current configuration as an

example):

secondary_server='taz.crh.noaa.gov'

web_modules='+images'

operational_modules='apps|apps-data rt_images|rtimages fxc sshhdev.crh.noaa.gov:fxc|fxcdev +media'

Some sites have temporarily used the dev_server variable to accomplish a similar result, though

this prevents synchronization of modules to the development server for offline development.

Any sites that have previously set dev_server to „taz.crh.noaa.gov‟ should return to the following

value in ldad_web_config.sh:

dev_server='sshdev.crh.noaa.gov'

37

Appendix H – Common Rsync Error Codes

The following is a brief list of rsync error and warning codes that you might find in rsync module “error”

or “warning” status files. Though this is not an exhaustive list, it does provide the errors and warnings

most often seen when running the LDAD rsync scripts as well as a description of the most likely known

causes.

Note that corrective actions on the remote (staging) server can only be made by SRH staff.

Code 0 – Rsync command was completed successfully.

Code 1 – Syntax or usage error. This error should not occur when rsync options in

ldad_web_config.sh have not been changed from the tested suggested settings. The most

likely problem is improperly set options ldad_web_config.sh.

Code 5 – Error starting client-server protocol. There may be a mismatch between the IP address of

the machines allowed to synchronize with the remote module and the current local

machine‟s IP address. This error indicates that there is not a corresponding remote rsync

module that the local machine is allowed to access. Check module configurations in

ldad_web_config.sh. If the local configuration file appears correct, the module may not

be defined on the staging server or the local LDAD IP address does not correspond with

the list IP addresses allowed to synchronize with the remote module.

When Code 5 suddenly occurs on modules that were previously functional, the iptables

process may not be operating properly. When the normal iptables address translation

fails on ls1, the apparent LDAD IP address shifts from the LDAD external IP address

normally assigned to ls1 by the LDAD firewall to the IP address of the LDAD firewall

itself (which is not normally on the allowed list of rsync IP addresses). When this

problem is occurring, connect to another Linux machine outside the LDAD DMZ and run

“who”. This command will indicate the host that you are connecting from. If the

indicated host is not the normal LDAD hostname (ls1) or LDAD external IP address,

address translation is not occurring properly. More than likely the LDAD firewall host

name or IP address is indicated instead. To ensure that all network services restart

properly, reboot ls1 to correct network address translation.

Code 12 – Error in rsync protocol data stream. The LDAD IP address change issue described in

Code 5 above may also apply, though it is more likely that the remote module is not

properly defined or not defined at all. If the remote module appears to be correctly

defined, the associated directory may not exist or permissions on the module‟s directory

on the staging server may not allow the rsync process to synchronize.

Code 23 – Partial transfer due to error. The code 23 will trip a “warning” status file rather than an

“error”. This code indicates that a remote file or directory cannot be overwritten or

deleted. This is a permissions issue on the staging server. New files and files with

proper permissions will synchronize while files with bad permissions cannot be updated

or removed on the staging server.

Code 24 – Partial transfer due to vanished source files. This is not considered an error by the rsync

scripts. It simply means that a file on LDAD was deleted before it could be copied. This

can happen under normal circumstances.

38

Code 30 – Timeout in data send/receive. Timeouts are most likely to occur when file transfers are

very large. Though small adjustments to timeouts or allowed bandwidth can be made in

ldad_web_config.sh, inspect the data to be transferred to determine whether rsync is the

best way to do it. For some applications, the LDAD rsync scripts may not be an

appropriate method. Contact SRH for guidance if timeouts frequently occur as adjusting

timeouts and bandwidth in an attempt to fix timeouts could have other unintended

consequences.

39

Appendix I – Service Backup

The LDAD rsync scripts allow updating of operational modules for service backup. It is

assumed that except under extraordinary conditions, the primary office will always update static

web images.

The rsync script will attempt to provide backup for all configured operational modules.

Synchronization of backup operational modules occurs when new files appear (in absence of a

corresponding “block” file). Backup module syncs do not delete existing files from the rsync

server to avoid removal of pre-existing files on the web. Because deletion does not occur in

backup mode, backup offices do not need to pull existing data before providing backup.

When an office is not providing service backup, “block” files are a good idea to allow

configuration and testing of scripts and procedures that create the images and data for backup.

Due to the potential complexities of providing data for service backup by rsync, it is a good idea

to devise a method to start and stop production of backup datasets through the use of scripts and

clearly defined local procedures. These scripts and procedures should be based on the guidance

described in the sections that follow.

In order for service backup to work properly:

 Backup office operational rsync modules must be configured on the rsync server to allow

access from the backup office LDAD IP addresses.

 The ldad_web_push.sh script must be at least version 2.33 for backup operations to go as

intended.

 Ensure that the “backup_site” configuration setting contains a space-delimited list of

office IDs (as used in the offices‟ rsync module names). This list can remain empty for

any site not prepared to provide service backup.

Beginning Operational Rsync Backup:

 Failed office requests that the backup office begin creating content for operational

modules.

 Failed office creates “block” files for operational modules or modifies cron to disable

rsync of those modules. The block file prevents deletion of files that are uploaded by the

backup office during service backup.

 Backup office runs a local script, or follows a locally defined procedure, that removes the

“block” files for all operational modules to be backed up. This step may or may not be

necessary depending on the method used for initiating backup data production.

 The backup office executes backup scripts that create data for failed office operational

modules.

Ending Operational Rsync Backup:

 The failed office informs the backup office when it is ready to resume operational status.

 The backup office ceases creation of backup data.

 The backup office creates “block” files for backup operational modules.

40

 The failed office creates a “pull” control file for each operational module that was backed

up to get any data that was produced by the backup office during service backup.

 The failed office removes “block” files for local operational modules.

 The backup office may clean out the contents of backup office rsync directories once the

primary office is considered stable and fully operational.

41

Release Notes

New in Version 2.21

 Documentation (including table in Appendix C) reflects new web module for Articulate

presentations.

 New setting prepend_server is added to allow better identification of control files (see

Appendices E & F). Default is “0” if not defined, resulting in no change in function.

 Appendix F has been added to the documentation to describe the control and status file

base file naming convention.

New in Version 2.30

 Addition of secondary_server variable to ldad_web_config.sh.

 Modules immediately preceded by a plus „+‟ symbol are now published to the server

defined by secondary_server in addition to the rsync_server. This is to allow

synchronization of modules needed on both the operational web server and the

operational CMS, which are not hosted on the same servers.

New in Version 2.30a

 Movement of script files to a zip file for easier download from website. Install procedure

has been updated to reflect this change.

 Samba, WebSync, get_current_stats.sh, and findWebOrphans.pl documentation moved to

separate documents.

New in Version 2.32

 Incomplete transfers due to rsync error 23 will result in the generation of “warning”

status files in the tmp directory. These are permission errors resulting from permission

problems on the remote rsync server that may need to be resolved by a system

administrator. Retries of partial rsync operations are not automatically retried.

 Incomplete transfers due to rsync error 24 will be ignored. These are generated when a

file queued for transfer is removed before the transfer occurred.

 Changed example ldad_web_config.sh.cms example configuration script to include

“images” in the no-delete modules list.

 BUGFIX: ldad_web_push.sh modified to correctly handle finding hung tasks with

process IDs <10000. Thanks to Clark Safford for finding this one.

New in Version 2.33

 Fix in service backup logic.

